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Abstract
The knowledge of plasma equation of state and photoabsorption requires
suitable and realistic models for the description of ions. The number
of relevant electronic configurations of ions in hot dense plasmas can be
immense (increasing with atomic number Z). In such cases, calculations
relying on the superconfiguration approximation appear to be among the best
statistical approaches to photoabsorption in plasmas. The superconfiguration
approximation enables one to perform rapid calculation of averages over all
possible configurations representing excited states of bound electrons. We
present a thermodynamically consistent model involving detailed screened
ions (described by superconfigurations) in plasmas. The density effects are
introduced via the ion-sphere model. In the usual approaches, bound electrons
are treated quantum mechanically while free electrons are described within the
framework of semi-classical Thomas–Fermi theory. Such a hybrid treatment
can lead to discontinuities in the thermodynamic quantities when pressure
ionization occurs. We propose a model in which all electrons (bound and
free) are treated quantum mechanically. Furthermore, resonances are carefully
taken into account in the self-consistent calculation of the electronic structure
of each superconfiguration. The model provides the contribution of electrons
to the main thermodynamic quantities, together with a treatment of pressure
ionization, and gives a better insight into the electronic properties of hot dense
plasmas.

PACS numbers: 51.30.+i, 31.15.Bs, 52.27.Gr

1. Introduction

Electronic properties of hot dense plasmas are important for the study of equation of state
and radiative transfer. They play a major role in inertial confinement fusion, in astrophysics
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(for the understanding of stellar structure and evolution), and in the simulation of laser-driven
experiments (for spectroscopic diagnostics for instance). It is worth mentioning that future
big lasers will allow experiments at much higher densities than in present-day experiments,
which will enable one to study density effects in a more accurate way. Moreover, electronic
properties of hot dense plasmas are of great interest in warm dense matter. In order to model the
various atomic processes, we need to describe plasma ions in their ground and excited states.
The superconfiguration (SC) method [1] appears to be a powerful statistical approach for the
treatment of real ionic species (i.e. associated with an integer number of bound electrons). Such
a method generally leads to a good agreement between theory and transmission experiments
involving plasmas of medium Z elements, due to the possible inclusion of a large number of
electronic configurations and states. The present work constitutes an attempt to improve the
SC calculations in order to take plasma density effects into account in a more detailed way.
The main objectives are the extension of our previous approaches [2–4] to high density regimes
(of the order of solid density and more), and the simultaneous calculation of equation of state
and photoabsorption (from the same formalism and therefore from the same code). Such a
model is now tractable numerically, since the SC approach allows one to evaluate efficiently
averages over excited states. However, in the best formulation, which would be variational,
all the electrons should be treated quantum mechanically and the confinement of ionic species
in a spherical cell should be abandoned. In this work, we propose a quantum treatment of
all electrons in the self-consistent-field (SCF) calculation of the SCs, but the spherical cell is
still used. In that sense the present model is different from the one proposed by Liberman [5].
We consider strongly coupled plasmas, i.e. plasmas for which the ionic Coulomb interaction
energy is greater than the thermal kinetic energy. This situation corresponds, in atomic units,

to � = Z2
eff

rwskBT
> 1, T being the temperature, rws the Wigner–Seitz radius (radius of the average

ionic spherical cell) and Zeff the effective charge of the plasma.

2. Theoretical features of the model

2.1. Superconfiguration description of ionic species

The entire plasma is represented by an imaginary atom, characterized by the Wigner–Seitz
sphere, containing bound and free electrons. The well-known average-atom model enables one
to calculate the average electronic configuration of the plasma. Such a model gives fractional
populations of the orbitals and the average ionization state of the plasma. On the basis of these
results, the relevant ‘real’ configurations of the plasma can be obtained. Unfortunately, the
number of electronic configurations can be tremendous, especially when the atomic number
Z increases. Therefore, it is suitable to group together ordinary subshells (orbitals) whose
average-atom energies are close to each other. Such an ensemble is called a supershell. A
superconfiguration [1] consists of supershells populated in all possible ways, consistently
with the Pauli exclusion principle. For instance, (1s2s2p)3(3s)2(3p3d)2(4s4p4d4f)3 is a
superconfiguration made of four supershells associated respectively with 3, 2, 2 and 3 electrons.
A configuration is a particular case of SC in which each supershell contains only one shell.
Moreover, a reasonable number of SCs (typically a few hundred for medium Z elements)
can contain a tremendous number of ordinary configurations. Therefore, the precision for
spectral photoabsorption can be improved by refinement of the SCs (i.e. subdivision of the
supershells), and it is possible to calculate macroscopic thermodynamic variables (pressure,
internal energy, Helmholtz free energy), by averaging over a reduced number of SCs made of
large supershells [6]. Assuming local thermodynamic equilibrium for all the configurations
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described by a SC � enables one to write the probability of a configuration c containing Q
electrons using Boltzmann’s law:

P (�)
c = Gc e−(Ec−µQ)/T

U
(�)
Q

, (1)

where Gc and Ec are the degeneracy and energy of the Q-electron configuration and U
(�)
Q

is the partition function of the SC. The value of a thermodynamic quantity A� for SC � is
obtained by averaging this quantity Ac over all the configurations of the SC:

A� =
∑
c∈�

AcP
(�)
c . (2)

Furthermore, it is important to mention that the main feature of the SC approximation
consists in a linearization of the energy of a configuration with respect to orbital populations
{qs}:

Ec ≈ E(0)
c + �E with E(0)

c =
∑
s∈c

qsεs and �E = 〈
Ec − E(0)

c

〉
�
. (3)

Expressions (3) enable one to ‘factorize’ the partition function of a SC and therefore to
evaluate it using recurrence relations [1, 2, 6]. The calculation of the electronic structure
of a SC is similar to the traditional average-atom calculation, except that each SC has an
integer number of bound electrons. The equations required for the calculation of SCs are
obtained from the stationarity of the ion-cell free energy with imposed integer populations for
the defined supershells. The exchange-correlation effects are taken into account in the local
density approximation (LDA) using the formulae of Iyetomi and Ichimaru [7].

2.2. Quantum mechanical description of the electrons

In the previous approaches [2–4], bound electrons were treated quantum mechanically, and
free electrons were described within the semi-classical Thomas–Fermi approximation [8]. In
the present work, all electrons are treated quantum mechanically. The electron density reads
therefore:

n(r) =
∑
n,l

f (εnl, µ)
2(2l + 1)

4π

y2
nl(r)

r2
+

∫ ∞

0
dεf (ε, µ)

∞∑
l=0

2(2l + 1)

4π

y2
εl(r)

r2
, (4)

bound- and free-electron wavefunctions being normalized in the whole space. f is the Fermi–
Dirac factor, µ is the free-electron chemical potential, ynl is the radial part of the bound-
electron wavefunction multiplied by r and yεl the radial part of the free-electron wavefunction
multiplied by r.

2.3. Calculation of average thermodynamic quantities

The value of thermodynamic quantity A is obtained by averaging A� over all the SCs:

A =
∑
�

W�A� with W� ∝ e− F�
T , (5)

where F� is the free energy of SC �. The quantum pressure of SC � is calculated using the
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Figure 1. Pressure versus density for an aluminium plasma at T = 30 g cm−3.

stress-tensor formula:

P� =
∑
n,l

(2l + 1)f (εnl, µ�)

4πr2
�

(
1 + εnl

2E0

)
[(

dynl

dr

∣∣∣∣
r�

)2

+

(
2εnl

(
1 +

εnl

2E0

)
− l2 + l + 1

r2
�

)
y2

nl(r�)




+
∫ ∞

0

(2l + 1)f (ε, µ�)

4πr2
�

(
1 + ε

2E0

)
[(

dyεl

dr

∣∣∣∣
r�

)2

+

(
2ε

(
1 +

ε

2E0

)
− l2 + l + 1

r2
�

)
y2

εl(r�)


 + Pxc,

(6)

where E0 is the rest mass of the electron, r� is the Wigner–Seitz radius of SC � and Pxc is
the exchange-correlation pressure. It is important to mention that in a more elaborate model,
pressure should be evaluated as a derivative of the Helmholtz free energy with respect to
volume. Figure 1 shows that the discontinuity of the average-atom pressure in the hybrid
model does not exist in the full quantum model. However, it is also important to note that
the superconfiguration pressure, even in the hybrid model, is smoother than the average-atom
pressure in the hybrid model. This can be explained by the fact that pressure ionization occurs
only in one SC and can be smeared out by the presence of other SCs.

3. Shape resonances

3.1. Definition and consequences

When the matter density increases, some bound states can disappear into the continuum. Such a
phenomenon, named pressure ionization [9, 10], leads, in the hybrid description of electrons,
to discontinuities in the thermodynamic functions. For instance, the main discontinuity in
figure 1 around 1.3 g cm−3 is due to pressure ionization of 3p orbital. Such discontinuities are
nonphysical [11], since normally there should be a smooth change of a discrete bound state
into a narrow shape resonance (peak in the density of free states). A shape resonance close to
the continuum boundary is narrow, especially for large values of orbital momentum l. Higher
energy resonances are broader and become indistinguishable from the continuum. Shape
resonances may affect calculation of many plasma properties, such as equation of state, x-ray
opacities, electrical conductivity and bremsstrahlung emission. Inclusion of shape resonances
may give a better insight into the meaning of the ionization state of the plasma.
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Figure 2. Density of free states for an iron plasma at T = 120 eV and ρ = 3.6 g cm−3 for two
different SCs, compared to the one resulting from an average-atom calculation.

3.2. Mathematical characterization

The free-electron wavefunctions can be expressed as

yεl(r) =
√

2
√

2ε

π
r[cos(δl(ε))jl(

√
2εr) − sin(δl(ε))nl(

√
2εr)], (7)

where δl is the well-known phase shift. jl and nl are Bessel functions. The search for shape
resonances has been implemented so that one cannot miss any of them. The derivative of
the phase shift with respect to energy dδl

dε
(ε) is calculated numerically, and when it becomes

larger than a fixed threshold value, the corresponding energy interval is refined to a smaller
mesh using a larger number of points, and so on. In that way, shape resonances are taken
into account through an iterative process of refinement of the energy grid. The density of free
states is given by

g(ε) = − 1

π
Im[Tr(Ĝ)], with Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0 and Ĝ0 = 1

ε − Ĥ0
, (8)

where Ĥ0 = − 1
2
�∇2. Using the expression of the T̂ -scattering matrix Tl ∝ eiδl (ε)√

2ε
sin[δl(ε)], one

gets

g(ε) =
√

2

π2
V

√
ε +

2

π

∞∑
l=0

(2l + 1)
dδl

dε
(ε), (9)

V being the ion-sphere volume. Figures 2 and 3 represent respectively the density of free
states and the phase shift for l = 3, for two superconfigurations and for an average-atom
calculation in the case of an iron plasma at T = 120 eV and ρ = 3.6 g cm−3. The jump of π

in the phase shift δ3(ε) indicates that a f orbital has been pressure ionized. Taking the shape
resonances into account during the iterations, the sudden increase of the free-electron number
(figure 4) due to pressure ionization of the 3p bound level of potassium at 3 eV is absorbed by
an increase of continuum density of states. The abrupt change of the bound-electron pressure
is compensated by an abrupt change of the free-electron pressure, leading to a continuous total
pressure.
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Figure 3. Phase shift δ3 for an iron plasma at T = 120 eV and ρ = 3.6 g cm−3 for two different
SCs, compared to the one resulting from an average-atom calculation.
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Figure 4. Bound-electron pressure, free-electron pressure and total pressure for a potassium (K)
plasma at T = 3 eV and different values of density.

4. Comparisons with neutral-pseudo-atom (NPA) model

The NPA model [12–14] relies on a density-functional theory of the ion distribution coupled
to a homogeneous electron fluid. Kohn–Sham–Mermin equations are solved for a ‘pseudo-
atom’ embedded in a jellium of negative charges with a cavity. The ionic fluid is described by
classical theory of liquids (classical DFT for ions). Pressure is then obtained from the virial
theorem. Figure 5 shows that the results obtained from our model are very close to the results
from the NPA model.

5. Impact on photoabsorption spectra

Figure 6 illustrates the fact that the strong enhancement (corresponding to pressure ionization
of the 4f orbital) in the spectrum of iron at T = 120 eV and ρ = 3.6 g cm−3 obtained in the
hybrid model does not exist in the new full quantum model. This is due to the better treatment
of pressure ionization resulting from our new approach.



Pressure ionization in the superconfiguration approach 4665

0 0.5 1 1.5

Density (g/cm
3
)

0

1

2

3

4

5

6

Pr
es

su
re

 (
M

ba
r)

NPA model
AA : full quantum treatment
AA : free Thomas-Fermi

Figure 5. Comparison with NPA model for an aluminium plasma at T = 30 eV.
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Figure 6. Photoabsorption spectrum for an iron plasma at T = 120 eV and ρ = 3.6 g cm−3.

6. Conclusion and perspectives

The model enables one to perform simultaneous calculations of photoabsorption and equation
of state, in the superconfiguration approximation. At present, the ions are still confined in
the spherical cell, but all the electrons are described quantum mechanically. The calculation
of shape resonances and the statistics of the superconfigurations provide a better treatment
of pressure ionization. The corresponding numerical code enables one to calculate the
thermodynamic functions over a wide range of densities and temperatures, and, thanks to
the superconfiguration averaging process, for mid-Z elements. In the future, it would be
interesting to calculate the ionic structure factor and therefore to evaluate electrical static
resistivities, using the extended Ziman formula.
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